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5 PHYMAT, Université de Toulon et du Var, 83957 La Garde, France

E-mail: exner@ujf.cas.cz and krejcirik@ujf.cas.cz

Received 3 April 2001
Published 20 July 2001
Online at stacks.iop.org/JPhysA/34/5969

Abstract
It has been shown recently that a nonrelativistic quantum particle constrained to
a hard-wall layer of constant width built over a geodesically complete simply
connected noncompact curved surface can have bound states, provided the
surface is not a plane. In this paper we study the weak-coupling asymptotics of
these bound states, i.e., the situation when the surface is a mildly curved plane.
Under suitable assumptions about regularity and decay of surface curvatures
we derive the leading order in the ground-state eigenvalue expansion. The
argument is based on Birman–Schwinger analysis of Schrödinger operators in
a planar hard-wall layer.

PACS numbers: 03.65.Ge, 02.40.-k, 02.70.Hm, 03.65.Vf

1. Introduction

The investigation of quantum particles constrained to a spatial region� of a prescribed shape, in
particular, relations between its spectral properties and the geometry of�, became an attractive
problem when the progress in technology made it possible to fabricate various mesoscopic
systems for which this is a reasonable model—see, e.g., [LCM]. Curvature induced bound
states in hard-wall strips and tubes were demonstrated more than a decade ago [ES] and studied
subsequently in numerous papers—cf [DE, LCM] and references therein.

Much less attention was paid to quantum mechanics in layers, apart from the trivial planar
case. While for an experimenter it is easier to prepare a semiconductor film on a curved
substrate than to fabricate a quantum wire, from the mathematical point of view the opposite
is true, and solving the Schrödinger equation in a nontrivial layer is more complicated than the
corresponding problem in a tube. It was noticed a long time ago that in the formal limit of zero
width the layer curvatures give rise to an effective attractive potential [KJ] but the first results
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for curved finite-width layers, with the particle Hamiltonian being a multiple of the Dirichlet
Laplacian −��

D, appeared only recently.
We restrict ourselves to the case when � is noncompact and nontrivially curved. The

first proof of the existence of geometrically induced bound states was given in [DEK1] under
the assumption that the planar layer is curved only locally. A more general case of curved
layers which are asymptotically planar, in the sense that the curvatures of the generating
surface vanish at large distances, has been discussed in [DEK2]. There we have derived
several sufficient conditions for the existence of bound states expressed in terms of geometric
quantities characterizing the reference surface. While these conditions cover a wide class of
layers, they do not represent an ultimate result: it is not clear, e.g., whether bound states exist
in layers built over surfaces of positive total Gauss curvature unless the latter are thin enough
or endowed with a cylindrical symmetry.

After demonstrating their existence one is naturally interested in the properties of the
curvature-induced bound states. A particular question which we are going to address in the
present paper concerns the weak-coupling regime. Since in our case the binding comes from
the curvature alone, the situation described is expected to occur in mildly curved layers. We
will show that the layer then has a unique eigenvalue and derive an asymptotic expansion for
the gap between this eigenvalue and the threshold of the essential spectrum. The leading term
in this formula will depend on the mean curvature of the reference surface.

Let us describe briefly the contents of this paper. In the next section we will give a precise
formulation of the problem and describe the main result summarized in theorem 2.1. The rest is
devoted to the proof. The strategy is adopted from the ‘lower-dimensional’ case of curved strips
and tubes analysed in [DE, section 4]. First, in section 3, we consider Schrödinger operators
acting in a planar layer built over R2. We derive a necessary and sufficient condition under
which such an operator has a bound state in the weak coupling limit and find the asymptotic
expansion of the eigenvalue. The result contained in theorem 3.4 is of independent interest; we
prove it in greater generality for a layer in R2+m, m � 1. Next, in section 4, we apply it to the
case of mildly curved quantum layers. We express the operator −��

D in the coordinates (x, u),
where x ≡ (x1, x2) ∈ R2 and u ∈ I := (−a, a) with a > 0 parametrize the surface and
its normal space, respectively, and pass to a unitarily equivalent operator with an effective
potential, which can be consecutively estimated by operators to which theorem 3.4 can be
applied. We will also show how the leading term in the expansion looks in the case of a thin
layer.

2. The results

To give a precise statement of the main result we need first to specify what we mean by mildly
curved quantum layers. Let a family of surfaces �ε := p (R2) be given by a Monge patch:

p : R2 → R3 p (x1, x2; ε) := (x1, x2, εf (x1, x2)) (2.1)

where f is supposed to be a C4-smooth function. Here ε > 0 is the parameter which controls
the deformation; it is supposed to be small so that �ε is a mildly curved plane. The cross-
product of the tangent vectors p,µ := ∂p/∂xµ, µ = 1, 2, defines a unit normal field n on �ε.
We put �0 := R2 × I and define a layer �ε := L(�0) of width d = 2a over the surface �ε

by virtue of the mapping L : �0 → R3 which acts as

L(x, u; ε) := p(x; ε) + u n(x; ε). (2.2)

The layer in question is thus the spatial region closed between two parallel surfaces—cf [Sp3,
Prob. 12 of chapter 3]—represented by p ± an. In this sense, we will hereafter refer to the
surface coordinates (x1, x2) as longitudinal variables, while u will be the transverse variable.
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We consider a nonrelativistic spinless particle confined to �ε which is free within it,
and suppose that the boundary of the layer is a hard wall, i.e. the wavefunctions satisfy the
Dirichlet boundary condition there. For the sake of simplicity we set Planck’s constant h̄ = 1
and the mass of the particle m = 1

2 . Then the Hamiltonian of the system can be identified

with the Dirichlet Laplacian −��ε

D on L2(�ε), which is defined for an open set �ε ⊂ R3

as the Friedrichs extension of the Laplacian acting on C∞
0 (�ε)—cf [RS4, section XIII.15]

or [Dav, chapter 6]. The domain of the closure of the corresponding quadratic form is the
Sobolev space W 1,2

0 (�ε).
Next we must introduce some notation and formulate assumptions about the function f , in

addition to the smoothness requirement mentioned above. We consider asymptotically planar
surfaces—cf [DEK2]—which means that the Gauss K and mean M curvatures of �ε vanish
at large distances from a fixed point. This will hold if we require

〈d1〉 f,µ ∈ L∞(R2) together with 〈d2〉 f,µν → 0 as |x| → ∞
for µ, ν ∈ {1, 2}. This allows us to localize the essential spectrum. Adapting
from [DEK2, theorem 4.1] a simple argument based on a Neumann bracketing one finds
that inf σess(−��ε

D ) � κ2
1 . Here {κ2

j := (κ1j)
2}∞j=1, with κ1 := π/d, are the eigenvalues

of −�I
D; the corresponding eigenfunctions will be denoted by χj . Assuming in addition

〈d3〉 f,µνρ → 0 as |x| → ∞ and 〈d4〉 f,µνρσ ∈ L∞(R2)

for µ, ν, ρ, σ ∈ {1, 2} we will be able to prove in section 4.3 that the bound is sharp:

inf σess(−��ε

D ) = κ2
1 . (2.3)

We also have to require that the derivatives of f satisfy the following integrability hypotheses:

〈r1, 2〉 f,µν, f,µνρ ∈ L2(R2, (1 + |x|δ) dx) respectively

and

〈r3〉 f,µνρσ ∈ L1(R2, (1 + |x|δ) dx) for some δ > 0

and µ, ν, ρ, σ ∈ {1, 2}. The main result of the present work is as follows:

Theorem 2.1. Let�ε be a family of layers generated by the surfaces�ε given by (2.1). Suppose
that the function f ∈ C4(R2) satisfies the hypotheses 〈d1–4〉 and 〈r1–3〉. If �1 is not planar,
then for all ε small enough −��ε

D has exactly one isolated eigenvalueE(ε) below the essential
spectrum. Moreover, it can be expressed as

E(ε) = κ2
1 − e2w(ε)−1

where w(ε) has the following asymptotic expansion:

w(ε) = −ε2
∞∑
j=2

(χ1, uχj )
2
I
(κ2

j − κ2
1 )

2
∫

R2

|m̂0(ω)|2
|ω|2 + κ2

j − κ2
1

dω + O(ε2+γ )

with γ := min{1, δ/2}. Here m0 is the lowest-order term in the expansion of the mean
curvature of �ε w.r.t. ε—cf (4.3).

Remarks. (a) The subscript ‘I ’ indicates the norm and the inner product in the space L2(I ).
The sum runs in fact over even n only because one integrates over the interval I = (−a, a) on
which the function u �→ χ1(u)uχj (u) is odd for odd j .

(b) The expression for the leading-term coefficient w1 in the expansion w(ε) =: ε2w1 +
O(ε2+γ ) does not have a very transparent structure. However, for thin layers it can be rewritten
as

w1 = − 1

2π
‖m0‖2 +

π2 − 6

24π3
‖∇m0‖2d2 + O(d4). (2.4)
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This formula is instructive because the first term comes from the surface attractive potentialK−
M2 which dominates the picture in this case, while the O(d4) error term expresses the
contribution of higher transverse modes. We refer to section 4.4 for more details.

3. Weakly coupled Schrödinger operators in a planar layer

Let M be an open connected precompact set in Rm, m � 1. The object of our interest in this
section will be the operator

Hλ = −�D + λV with λ > 0 on H := L2(R2)⊗ L2(M) (3.1)

where−�D is the Dirichlet Laplacian on R2×M defined as the closure of−�⊗Im+I2⊗−�M
D .

In the last expression the unindexed −� stays for the Laplace operator in R2. The potential V
is supposed to be H 1/2

0 -bounded, in other words

〈a1〉∃ a, b � 0 ∀ψ ∈ DomQ0 : ‖Vψ‖ � a‖ψ‖ + b
∥∥H 1/2

0 ψ
∥∥

where DomQ0 = W
1,2
0 (R2 ×M) is the form domain of Hλ.

The Dirichlet Laplacian −�M
D on L2(M) has a purely discrete spectrum consisting of

eigenvalues κ2
1 < κ2

2 � · · · � κ2
j < · · ·; the corresponding normalized eigenfunctions will

be denoted by χj , where j = 1, 2, . . . . The lowest eigenvalue is, of course, simple and
the eigenfunction χ1 can be chosen positive—cf [RS4, section XIII. 12]. Important for our
purposes are the transverse projections of the potential:

Vjj ′ :=
∫
M

χ̄j (y) V (·, y) χj ′(y) dy

and the analogous quantities for other functions on R2 ×M , in particular for |V |. We shall
adopt the assumptions

〈a2〉 |V |11 ∈ L
1+δ(R2) and 〈a3〉|V |11 ∈ L1(R2, (1 + |x|δ) dx)

for some δ > 0. We also suppose that the essential spectrum of Hλ does not start below the
lowest transverse-mode threshold, i.e.

〈a0〉 inf σess(Hλ) � κ2
1 .

This is true, in particular, if V vanishes at large distances from a fixed point.
The goal of this section is to show that, for λ small enough, the discrete spectrum of Hλ

below κ2
1 is not empty, provided the projection of V onto χ1 is not repulsive in the mean.

This part of the spectrum then contains only one eigenvalue E(λ) for such a small λ and it
approaches κ2

1 as λ tends to zero. The last claim follows from the following elementary fact.

Proposition 3.1. Assume 〈a1〉. Then there are positive constants λ0 and c such that, for
all λ ∈ (0, λ0), we have Hλ � κ2

1 − cλ.

Proof. Using the Schwarz inequality and the assumption 〈a1〉 together with the inequality
between the geometric and arithmetic means, we have for all ψ ∈ DomQ0 the bound

Qλ[ψ] := ∥∥H 1/2
λ ψ

∥∥2 �
∥∥H 1/2

0 ψ
∥∥2 − λ‖ψ‖ ‖Vψ‖

� (1 − λ b/2)
∥∥H 1/2

0 ψ
∥∥2 − λ (a + b/2) ‖ψ‖2.

Since
∥∥H 1/2

0 ψ
∥∥ � κ1 ‖ψ‖, we obtain the assertion by putting λ0 := 2/b and c :=

a + (1 + κ2
1 ) b/2. �
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3.1. Birman–Schwinger analysis

Using the orthonormal basis of L2(M) given by {χj }, the free resolvent operator R0(α) :=
(H0 − α2)−1 is decoupled in the following way:

R0(α) =
∞∑
j=1

χj (−� + kj (α)
2)−1 χ̄j kj (α) :=

√
κ2
j − α2.

If we are interested in eigenvalues ofHλ below the lowest transverse mode, we have to consider
α ∈ [0, κ1) and the two-dimensional resolvent in the middle of the expansion is well defined for
any j = 1, 2, . . . . It can be expressed in terms of Hankel’s function—cf [AGHH, chapter I.5].
Passing to Macdonald’s functions K0 by [AS, 9.6.4], we arrive at the following integral kernel
formula:

R0(x, y, x
′, y ′;α) = 1

2π

∞∑
j=1

χj (y)K0
(
kj (α)|x − x ′|) χ̄j (y ′). (3.2)

Define K(α) := |V |1/2R0(α)V
1/2, where we have employed the usual sign convention,

V 1/2 := |V |1/2sgnV . According to the Birman–Schwinger principle—cf [Sim]—the function
α(λ)2 ≡ E(λ) is an eigenvalue of Hλ if and only if the operator λK(α) has the eigenvalue −1,
i.e.

α2 ∈ σdisc(Hλ) ⇐⇒ −1 ∈ σdisc(λK(α)). (3.3)

The first term in the expansion (3.2) referring to j = 1 has a singularity at α = κ1, and as usual
in such problems we have to single it out. For this purpose we first introduce the following
decomposition.

Lemma 3.2. There are real-analytic functions f and g such that

∀u ∈ (0,∞) : K0(u) = f (u) ln u + g(u)

and

(i) f (u) = −1 + O(u2), g(u) = (ln 2 − γE) + O(u2) as u → 0+,
(ii) ∃C1 > 0 ∀u ∈ (0,∞) : max{f (u), g(u)} � C1e−u,

where γE denotes Euler’s constant.

Proof. Around the origin a good choice to approximate the Macdonald function K0 would be
f := −I0, where I0 is the other modified Bessel function [AS, 9.6] but it has a poor behaviour
at large distances. Hence we use an interpolation, for instance

f (u) := −e−u
2
I0(u)− (1 − e−u

2
)K0(u)

g(u) := e−u
2
I0(u) ln u + [1 + (1 − e−u

2
) ln u]K0(u).

Using the relation [AS, 9.6.13], we obtain the behaviour at the origin (i). On the other hand,
it follows by [AS, 9.7.2] that f and g have a faster-than-exponential decay at infinity, which,
together with (i), gives that there is a positive C1 such that (ii) holds. �

We will thus use the decomposition K(α) = Lα + Mα , where

Lα(x, y, x
′, y ′) := − 1

2π
|V (x, y)|1/2 χ1(y) ln k1(α) χ1(y

′) V (x ′, y ′)1/2

contains the singularity and the regular Mα splits into two parts again, Mα = Aα + Bα .
The operator Bα is given by the projection of the resolvent on higher transverse modes, i.e.
Bα := |V |1/2R⊥

0 (α)V
1/2 with

R⊥
0 (α) :=

∞∑
j=2

χj (−� + kj (α)
2)−1 χ̄j (3.4)
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and the kernel of the remaining term is therefore

Aα(x, y, x
′, y ′) := 1

2π
|V (x, y)|1/2 χ1(y) (K0(k1(α)|x − x ′|) + ln k1(α)) χ1(y

′) V (x ′, y ′)1/2.

We note that Mα is, by definition, well defined for α = κ1. In particular

Aκ1(x, y, x
′, y ′) = − 1

2π
|V (x, y)|1/2 χ1(y)

(
γE + ln

|x − x ′|
2

)
χ1(y

′)V (x ′, y ′)1/2.

Furthermore, we have the following lemma. Since its proof is purely technical, we postpone
it to section 3.2 below.

Lemma 3.3. Assume 〈a1–3〉. Then there are positive C2, C3 and C4 such that

(i) ∀α ∈ [0, κ1] : ‖Mα‖ < C2,
(ii) ‖Mα −Mκ1‖ � C3λ

γ , with γ := min{1, δ/2},
(iii) ‖ dMα(w)

dw ‖ < C4|w|−1 for λ sufficiently small, where w := (ln k1(α))
−1.

We recall that proposition 3.1 yields α2 → κ2
1− as λ → 0+, and consequently, k1(α) → 0+.

Hence the auxiliary variable w is well defined and negative for λ small enough, and w → 0−
as λ → 0+.

By the Birman–Schwinger principle (3.3) eigenvalues of Hλ correspond to singularities
of the operator (I + λK(α))−1 which we can equivalently express as

(I + λK(α))−1 = [I + λ(I + λMα)
−1Lα]−1(I + λMα)

−1.

Since Mα is bounded independently of α due to lemma 3.3(i), we have ‖λMα‖ < 1 for all
sufficiently small λ, and therefore the second term on the right-hand side of the last relation
is a bounded operator. On the other hand, λ(I + λMα)

−1Lα is a rank-one operator of the
form (ψ, ·)ϕ, where

ψ(x, y) := − λ

2π
ln k1(α) V (x, y)

1/2 χ1(y)

ϕ(x, y) := [(I + λMα)
−1|V |1/2χ1](x, y)

so it has just one eigenvalue which is (ψ, ϕ). The requirement that the latter equals −1 yields
the implicit equation

w = F(λ,w) F (λ,w) := λ

2π
(V 1/2χ1, (I + λMα(w))

−1|V |1/2χ1) (3.5)

where we use the auxiliary variable w defined in lemma 3.3 which determines the energy via
α2 = κ2

1 − e2w−1
. Solving (3.5), we arrive at the main result of this section.

Theorem 3.4. Assume 〈a0–3〉 and exclude the trivial case, V ≡ 0. Then Hλ, for sufficiently
small λ > 0, has exactly one eigenvalue E(λ) if and only if∫

R2
V11(x) dx � 0 (3.6)

and in this case we can express it as E(λ) = κ2
1 − e2w(λ)−1

, where w(λ) has the following
asymptotic expansion:

w(λ) = λ

2π

∫
R2
V11(x) dx +

(
λ

2π

)2
{ ∫

R2×R2
V11(x)

(
γE + ln

|x − x ′|
2

)
V11(x

′) dx dx ′

−
∞∑
j=2

∫
R2×R2

V1j (x)K0(kj (κ1)|x − x ′|) Vj1(x
′) dx dx ′

}
+ O(λ2+γ ) (3.7)

with γ := min{1, δ/2}.
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Proof. Inserting the identity

(I + λMα)
−1 = I − λMκ1 − λ(Mα −Mκ1) + λ2M2

α(I + λMα)
−1

into (3.5) and employing lemmas 3.3(i) and (ii), we get the asymptotic expansion (3.7). Note
that its coefficients are well defined owing to 〈a3〉; in particular, for the second-order terms
it is true since (V 1/2χ1,Mκ1 |V |1/2χ1) estimated by the Schwarz inequality is finite because
of 〈a3〉 and lemma 3.3(i). The sufficient and necessary condition (3.6) follows from the fact
that E(λ) converges to κ2

1 as λ → 0+ because of proposition 3.1, which corresponds to the
situation that w goes to zero assuming negative values. In view of (3.7) it is evident that this
is the case if

∫
V11 is strictly negative. We want to show that w is negative also for small λ if

the first term in the expansion vanishes. Suppose first that the potential projections Vjj ′ belong
to L2(R2). Then we have∫

R2×R2
V1j (x)K0(kj (κ1)|x − x ′|) Vj1(x

′) dx dx ′

= (V1j , K0 ∗ Vj1) = (V̂1j , K̂0 ∗ Vj1)

= 2π(V̂1j , K̂0V̂j1) = (2π)2
∫

R2

|V̂1j (ω)|2
|ω|2 + κ2

j − κ2
1

dω > 0 (3.8)

because (2π)−1K0(kj (κ1)| · |) is the Green function of −� + kj (κ1)
2. At the same time, by

lemma 3.2(i) and the fact that we deal with the case
∫
V00 = 0 now,

−
∫

R2×R2
V11(x)

(
γE + ln

|x − x ′|
2

)
V11(x

′) dx dx ′

= lim
ε→0+

∫
R2×R2

V11(x) (K0(ε|x − x ′|) + ln ε) V11(x
′) dx dx ′

= lim
ε→0+

∫
R2×R2

V11(x)K0(ε|x − x ′|) V11(x
′) dx dx ′ (3.9)

is also positive, which follows by the consecutive use of the Fourier transform trick (3.8).
For a general Vjj ′ �∈ L2(R2) we can approximate the potential by the cut-off functions
V N := χ[−N,N ]2 sgnV min{|V |, N}, where χA denotes the characteristic function of a set A.
Then the expressions in the first line of (3.8) and the last line of (3.9) are approximated
by sequences whose elements are positive by the above argument. Using the dominated
convergence and the absolute continuity of the Lebesgue integral we find that the limits exist,
and of course they are positive again. Together we get that the second-order term in the
expansion (3.7) is negative.

It remains to check that (3.7) is the only solution of (3.5) for λ small. This will be true if we
prove it for a nonpositive V since it represents a more attractive interaction; we thus replace V
by −|V | in the expression for F . Using the Schwarz and triangle inequalities together with
lemmas 3.3(i) and (iii), we arrive at the estimate∣∣∣∣∂F∂w (λ,w)

∣∣∣∣ = λ

2π

∣∣∣∣
(
|V |1/2χ1, (I + λMα(w))

−1λ
dMα(w)

dw
(I + λMα(w))

−1|V |1/2χ1

)∣∣∣∣
� λ2

2π
‖|V |1/2χ1‖2

2‖(I + λMα(w))
−1‖2

∥∥∥∥dMα(w)

dw

∥∥∥∥
� λ2

2π
(1 − λC2)

−2 C4

|w| ‖|V |11‖2
1

which holds for λ sufficiently small and strictly less than C−1
2 . The norm of the potential

is finite by assumption 〈a3〉. Excluding the trivial case V ≡ 0 we note that there exists
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a c′ > 0 such that the inequality |w|−1 � c′λ−1 is valid for any solution w of the implicit
equation (3.5) and λ small enough. So there is a C5 > 0 such that the partial derivative of F
w.r.t. w is bounded by C5λ for all sufficiently small λ. Since any two solutions w1, w2 of the
equation w = F(λ,w) have to fulfil

|w2 − w1| =
∣∣∣∣
∫ w2

w1

∂F

∂w
dw

∣∣∣∣ �
∣∣∣∣
∫ w2

w1

∣∣∣∣∂F∂w
∣∣∣∣ dw

∣∣∣∣ � C5λ |w2 − w1|

the uniqueness is ensured for λ < C−1
5 . �

3.2. Proof of lemma 3.3

A reader not interested in the following technical analysis of the operator Mα may skip this
subsection. We recall that Mα is given by the sum of Aα and Bα , which are of a different
nature. To prove the assertions of lemma 3.3 we consider each of the operators separately.

3.2.1. Analysis of Aα . We show first that this operator is of the Hilbert–Schmidt class
for α = κ1.

Lemma 3.5. Assume 〈a2〉, 〈a3〉, then Aκ1 is a Hilbert–Schmidt operator.

Proof. Let us compute the HS-norm:

‖Aκ1‖2
HS = 1

4π2

∫
R2

∫
R2

|V |11(x)

∣∣∣∣γE + ln
|x − x ′|

2

∣∣∣∣
2

|V |11(x
′) dx dx ′.

It can be estimated by a sum of two integrals. The first one will be finite if |V |11 ∈ L1(R2)

which is true by 〈a3〉, so it remains to check that the integral

J :=
∫

R2×R2
|V |11(x) ln2 |x − x ′| |V |11(x

′) dx dx ′

is finite. To estimate it, we divide the region of integration into two parts: if |x− x ′| � 1, then
for any δ > 0 there is a Cδ > 0 such that

ln2 |x − x ′| � ln2(|x| + |x ′|) � ln2(1 + |x|)(1 + |x ′|) � Cδ(1 + |x|δ)(1 + |x ′|δ)
and the contribution to J is thus finite because of 〈a3〉. On the other hand, for |x− x ′| < 1 we
use the Hölder and Young inequalities:

J =
∫

R2
dx |V |11(x)

∫
R2

dx ′ χ[0,1](|x − x ′|) ln2 |x − x ′| |V |11(x
′)

� ‖|V |11‖1+δ ‖χ[0,1] ln2 ∗ |V |11‖1+δ−1

� ‖|V |11‖2
1+δ ‖χ[0,1] ln ‖r = <(r + 1)1/r ‖|V |11‖2

1+δ

where r := (1 + δ−1)/2, which yields a finite value owing to 〈a2〉. �
In a similar way we can estimate the HS-norm of Aα − Aκ1 .

Lemma 3.6. Assume 〈a3〉, then ‖Aα −Aκ1‖HS � C6 k1(α)
δ holds with a positive constant C6

independent of α.

Proof. Using the decomposition of lemma 3.2,

(Aα − Aκ1)(x, y, x
′, y ′)

= |V (x, y)|1/2 χ1(y) {[f (k1(α)|x − x ′|)− f (0)] ln k1(α)|x − x ′|
+g(k1(α)|x − x ′|)− g(0)}χ1(y

′) V (x ′, y ′)1/2
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which yields the estimate ‖Aα − Aκ1‖2
HS � 2 (J 2

1 + J 2
2 ), where

J= :=
∫

R2×R2
|V |11(x) h=(k1(α)|x − x ′|) |V |11(x

′) dx dx ′ = = 1, 2

with h1(u) := [(f (u) − f (0)) ln u]2 and h2(u) := [g(u) − g(0)]2. Since these functions
are bounded, both integrals are finite under the assumption |V |11 ∈ L1(R2). Consequently,
‖Aα − Aκ1‖HS has a bound independent of α. However, we want to prove in addition that Aα

converges in HS-norm to Aκ1 , i.e. the stated assertion. By virtue of lemma 3.2, we have for
any δ ∈ (0, 2) the rough bounds h=(u) � c=u

δ for some constants c= > 0. This bound, together
with |x − x ′|δ � max{1, 2δ−1} (|x|δ + |x ′|δ) and |x|δ + |x ′|δ � (1 + |x|δ)(1 + |x ′|δ), yields the
estimate

J= � C̃6 k1(α)
δ

( ∫
R2

|V |11(x) (1 + |x|δ) dx

)2

where C̃6 := max{1, 2δ−1}max{c1, c2}. Since the integral is finite by 〈a3〉, we arrive at the
sought-after result. �

It is now easy to check that the two preceding lemmas imply the claims (i) and (ii) of lemma 3.3
for the operatorAα , since ‖·‖ � ‖·‖HS and k1(α) = O(λ1/2) as it follows from proposition 3.1.

It is also easy to see thatα �→ Aα considered as the operator-valued function is real-analytic
in [0, κ1). It cannot be analytically continued to an open interval containing κ1. However, if
we consider instead the function w �→ Aα(w) with the auxiliary variable w = (ln k1(α))

−1,
this one can be continued to a complex region that includes w = 0, which is the point of our
interest because it is obtained in the limit λ → 0. We use this fact to estimate the norm of the
derivative w.r.t. w, which establishes claim (iii) of lemma 3.3 for the operator Aα(w).

Lemma 3.7. Assume 〈a2〉and 〈a3〉, then for sufficiently small w:∥∥∥∥dAα(w)

dw

∥∥∥∥ < C7

|w| with some C7 > 0.

Proof. Let us choose the contour < := {z = w + weit : t ∈ [0, 2π) } in the complex plane,
where w is supposed to be negative and small enough so that Aα(w) is analytic in the interior
of the curve. We can use the Cauchy integral formula to estimate the complex derivative∥∥∥∥dAα(w)

dw

∥∥∥∥ =
∥∥∥∥ 1

2π i

∮
<

Aα(z)

(z− w)2
dz

∥∥∥∥ � supz∈< ‖Aα(z)‖
|w| .

It is straightforward to modify the proof of lemma 3.6 (including the technical lemma 3.2) in
order to check the continuity of Aα in κ1 w.r.t. to the HS-norm also for complex values of α.
This yields the desired result. �

3.2.2. Analysis ofBα . Mimicking [BGRS, lemma 2.2] and [BEGK, lemma 2.3] we denote as
H1 ⊂ H the subspaceL2(R2)⊗{χ1}. Let P1 be the corresponding projection and P⊥

1 := I−P1,
then we can write R⊥

0 (α) defined in (3.4) as P⊥
1 R0(α)P⊥

1 .

Lemma 3.8. Assume 〈a1〉, then α �→ Bα is uniformly bounded in the operator-norm topology
on the interval [0, κ2 − ε] for any ε ∈ (0, κ2].

Proof. Since the lowest point in the spectrum of H0 P⊥
1 � P⊥

1 H is κ2
2 , the operator-valued

function R⊥
0 (·) has an analytic continuation into the region {α ∈ C |α2 ∈ C \ [κ2

2 ,∞) }.
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In particular, this region includes the interval [0, κ1] actually considered, where one has the
following estimate on the norm:

‖R⊥
0 (α)‖ = sup

j=2,3,...
(κ2

j − α2)−1 = (κ2
2 − α2)−1 < (κ2

2 − κ2
1 )

−1.

If V was essentially bounded then this result would be sufficient for the boundedness of Bα

because ‖Bα‖ � ‖V 1/2‖∞‖R⊥
0 (α)‖ ‖V 1/2‖∞. In order to accommodate the extra factors

|V |1/2, V 1/2 under our weaker assumption 〈a1〉, we introduce the quadratic form

bα(φ,ψ) := (φ, Bαψ) =
(
R⊥

0 (α)
1/2 P⊥

1 |V |1/2φ,R⊥
0 (α)

1/2 P⊥
1 V 1/2ψ

)
with α supposed to be a real number from an interval [0, κ2 −ε]. To check boundedness of this
form, it is sufficient to verify that R⊥

0 (α)
1/2 P⊥

1 |V |1/2 is a bounded operator, i.e. that |V |1/2

is (R⊥
0 (α)

−1/2 P⊥
1 )-bounded, which is equivalent to the statement that there exist c1, c2 � 0

such that

∀ψ ∈ DomQ0 : ‖V 1/2 P⊥
1 ψ‖2 � c1‖ψ‖2 + c2‖R⊥

0 (α)
−1/2 P⊥

1 ψ‖2.

However

‖V 1/2 P⊥
1 ψ‖2 = (P⊥

1 ψ, |V |P⊥
1 ψ) � ‖P⊥

1 ψ | ‖V P⊥
1 ψ‖

� ‖P⊥
1 ψ‖(a‖P⊥

1 ψ‖ + bt‖H 1/2
0 P⊥

1 ψ‖)
�

(
a +

b

2

)
‖ψ‖2 +

b

2

∥∥H 1/2
0 P⊥

1 ψ
∥∥2
.

In the first step we have used the Schwarz inequality, in the second our hypothesis 〈a1〉, and
finally the inequality between the geometric and arithmetic means together with ‖P⊥

1 ψ‖ �
‖ψ‖. At the same time,

‖R⊥
0 (α)

−1/2 P⊥
1 ψ‖2 = (P⊥

1 ψ, (H0 − α2)P⊥
1 ψ) � ‖H 1/2

0 P⊥
1 ψ‖2

so we can identify c1 := a + b/2 and c2 := b/2, which completes our proof. �

This establishes lemma 3.3(i) for the operator Bα . Since k1(α)
2 � cλ owing to

proposition 3.1, property (ii) is included in the following result.

Lemma 3.9. Assume 〈a1〉, then there exists C7 > 0 such that

‖Bα − Bκ1‖ � C7 k1(α)
2.

Proof. Using the first resolvent identity [Wei, theorem 5.13], we infer

‖Bα − Bκ1‖ = |α − κ1|‖|V |1/2R⊥
0 (α)R

⊥
0 (κ1)V

1/2‖
� |α − κ1|‖|V |1/2R⊥

0 (α)
1/2‖‖R⊥

0 (α)
1/2||R⊥

0 (κ1)
1/2|‖R⊥

0 (κ1)
1/2V 1/2‖.

However, |κ1 − α| � κ−1
1 k1(α)

2 and it is clear from the proof of lemma 3.8 that the remaining
factors at the rhs of the above estimate are finite. �

Similarly to the operator Aα , we also need a bound on the derivative of Bα(w) w.r.t. w.
However, the situation in the present case is simpler becauseR⊥

0 (α) itself is analytic in an open
complex set containing α = κ1.

Lemma 3.10. Assume 〈a1〉, then for sufficiently small w,∥∥∥∥dBα(w)

dw

∥∥∥∥ � C8 with some C8 > 0.
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Proof. Since

dBα(w)

dw
= dBα

dα

dα

dw
= 2

e2w−1

w2
|V |1/2R⊥

0 (α(w))
2V 1/2

and the prefactor function w−2e2w−1
is uniformly bounded in (−∞, 0), we can employ the

Schwarz inequality to get the estimate

‖|V |1/2R⊥
0 (α)

2V 1/2‖ � ‖|V |1/2R⊥
0 (α)

1/2‖‖R⊥
0 (α)‖‖R⊥

0 (α)V
1/2‖.

It is clear from the proof of lemma 3.8 that the right-hand side of this inequality is uniformly
bounded in [0, κ2 − ε] for any ε ∈ (0, κ2]. The former interval contains a neighbourhood of κ1

in which w is well defined. �

This yields the remaining assertion (iii) of lemma 3.3 for |w| < 1.

4. Mildly curved layers

Our strategy in proving the ground-state asymptotic expansion in mildly curved layers �ε will
be to estimate the corresponding Hamiltonian −��ε

D by an operator of the form −�−�I
D +εV

and to apply theorem 3.4 to the latter. Here −� is the Laplacian in the plane, −�I
D is the

transverse operator which is the particular case of −�M
D discussed in the preceding section,

and V is an effective potential given by curvatures of �ε.

4.1. The geometry

The family of metric tensors for the surfaces given by (2.1) has the form

gµν(ε) = δµν + ε2ηµν with (ηµν) :=
(

f,1
2 f,1f,2

f,1f,2 f,2
2

)
where the symbol δµν (as well as δµν) has to be understood as the identity matrix. Since
det(ηµν) = 0 we get immediately

g(ε) := det(gµν) = 1 + ε2 tr(ηµν) = 1 + ε2(f,1
2 + f,2

2) (4.1)

together with the expression for the inverse matrix:

gµν(ε) = g(ε)−1(δµν + ε2η̃µν) with (η̃µν) :=
(

f,2
2 −f,1f,2

−f,1f,2 f,1
2

)
.

In particular, the Jacobian g1/2 defines through d�ε := g1/2 dx the invariant surface element.
We will suppose that the matrix function ηµν is bounded. Since its eigenvalues are 0 and
f,1

2 + f,22, this will be true provided the second eigenvalue is a bounded function in R2, i.e. if
we adopt the assumption 〈d1〉. Denote the bound of ηµν by η∞. Then it follows that gµν(ε) is
uniformly elliptic for sufficiently small ε because

c−δµν � gµν(ε) � c+δµν with c± := 1 ± ε2η∞. (4.2)

At the same time, the vector n(ε) = g(ε)−1/2(−εf,1,−εf,2, 1) represents the surface normal
and therefore the second fundamental form is given by

hµν(ε) = εg(ε)−1/2θµν with (θµν) :=
(
f,11 f,12

f,21 f,22

)
.

We can now construct the Weingarten tensor [Kli, definition 3.3.4 and proposition 3.5.5]:

h ν
µ (ε) := hµρg

ρν = εg(ε)−3/2(θµρδ
ρν + ε2θµρη̃

ρν)
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which determines respectively the Gauss curvatureK and the mean curvatureM of the surface
�ε:

K(ε) = ε2g(ε)−2k0 with k0 := det(θµν) = f,11f,22 − f,12
2

M(ε) = εg(ε)−3/2(m0 + ε2m1) with m0 := 1
2 tr(θµν) = 1

2 (f,11 + f,22)

and m1 := 1
2 tr(θµρη̃

ρν) = 1
2 (f,1

2f,22 + f,2
2f,11 − 2f,1f,2f,12).

(4.3)

Since we are interested in the case when �ε is asymptotically planar [DEK2], i.e. when
K,M → 0 as |x| → ∞, we assume 〈d2〉.

It is clear from the definition (2.2) that the metric tensor of the layer �ε (as a submanifold
of R3) has the block form

(Gij ) =
(
(Gµν) 0

0 1

)
with Gνµ = (δσν − uh σ

ν )(δ
ρ
σ − uh ρ

σ )gρµ (4.4)

and thus G := det(Gij ) = g(1 − 2Mu + Ku2)2. Following [DEK2], one should make sure
that the layer mapping L is a diffeomorphism. However, this is automatically fulfilled for
an arbitrary a provided ε is small enough and the layer is built over surfaces of the special
form (2.1). At the same time, Gµν can be estimated by the surface metric:

C−gµν � Gµν � C+gµν with C± := (1 ± aρ−1
m )2 (4.5)

where ρ−1
m := max{‖k1‖∞, ‖k2‖∞} = O(ε) and k1, k2 are the principal curvatures of �ε, i.e.

the eigenvalues of h ν
µ .

4.2. The Hamiltonian

In the beginning we have identified the particle Hamiltonian with −��ε

D . We want to replace
it by a Schrödinger-type operator which would allow us to employ the result of the previous
section. This is achieved by means of the unitary transformation:

U : L2(�ε) → L2(�0, g
1/2 dx du) : {ψ �→ Uψ := (1 − 2Mu + Ku2)1/2 ψ ◦L }

which leads to the unitarily equivalent operator:

H := U(−��ε

D )U−1 = −g−1/2∂ig
1/2Gij∂j + V

V = g−1/2(g1/2GijJ,j ),i + J,iG
ijJ,j with J := ln

√
1 − 2Mu + Ku2.

It makes sense since we suppose that the surface is C4-smooth. Using the block form (4.4)
of Gij , we can split H into a sum, H = H1 + H2. For the first operator which is given by the
part of H where one sums over the Greek indices (referring to the longitudinal coordinates),
owing to (4.5) we have the estimate

(C−/C2
+)(−�g + v1) � H1 � (C+/C

2
−)(−�g + v1) (4.6)

which holds in L2(R2 × I, g1/2 dx du) in the form sense. Here −�g denotes the surface
Laplace–Beltrami operator which can be written in the component form as−g−1/2∂µg

1/2gµν∂ν ,
and

v1 := −|u2∇gK − 2u∇gM|2g
4(1 − 2Mu + Ku2)2

+
u2�gK − 2u�gM

2(1 − 2Mu + Ku2)
(4.7)

where | · |g and ∇g mean, respectively, the norm and the gradient operator induced by the
metric gµν . On the other hand,

H2 = −∂2
3 + V2 V2 = K −M2

(1 − 2Mu + Ku2)2
(4.8)
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where the potential V2 is attractive becauseK−M2 can be rewritten by means of the principal
curvatures as − 1

4 (k1−k2)
2.

In the second step one uses the inequalities (4.2), which are a consequence of 〈d1〉, in
order to get the bounds

(c2
−/c

3
+)(−�) � −�g � (c2

+/c
3
−)(−�) in L2(R2, g1/2 dx).

It remains to realize that—as another consequence of the uniform ellipticity of the metric—one
can identify L2(R2, g1/2 dx) = L2(R2), and also L2(R2 × I, g1/2 dx du) = L2(R2 × I ) as
sets. If we rescale the longitudinal variable by means of x �→ σ±x with σ 2

± := c3
∓C

2
∓/(c

2
±C±),

we obtain finally the above indicated bounds:

H− � H � H+ with H± := −�− ∂2
3 + εV± (4.9)

where

V±(x, u) := 1

ε

(
C±
C2∓

v1 + V2

)
(x/σ±, u) .

We notice that, since v1 and V2 are ε-dependent—cf (4.3) and the explicit formulae for the
potentials (4.7) and (4.8)—the potentials V± are well defined for ε = 0.

4.3. The ground state asymptotics

Suppose that each of the operatorsH± has for all sufficiently small ε just one eigenvalueE±(ε).
Since H− is below bounded, the minimax principle tells us that the same is true for H and

E−(ε) � E(ε) � E+(ε). (4.10)

If we identify ε with λ of the previous section, we see that, under our assumptions, the
operators H± are well suited for the application of theorem 3.4.

Indeed, the decay requirements 〈d1–4〉 yield that K,M, |∇gK|g, |∇gM|g and �gK tend
to zero at infinity, and consequently (V±)11 → 0 as |x| → ∞. Notice that we do not assume
a decay of �gM at infinity which would require f,µνρσ → 0 as |x| → ∞. The reason is that
the term u�gM itself in the potential (4.7) vanishes when projected onto the first transverse
mode χ1. One can thus take ψn(x, u) := ϕn(x)χ1(u), where ϕn with ‖ϕn‖ = 1 is a sequence
of functions with increasing support which move towards infinity as n → ∞. If ϕn is properly
chosen such ψn form a Weyl sequence for H± and any κ2

1 + α with α ∈ R+. Using then a
Neumann bracketing argument, as mentioned in section 2, in order to show that no κ2

1 + α

with α < 0 can belong to the essential spectrum, we conclude that σess(H±) = [κ2
1 ,∞). This

verifies 〈a0〉 of theorem 3.4. Furthermore, using this result together with (4.9) and the minimax
principle, we infer that inf σess(H) = κ2

1 .
The requirement 〈a1〉 holds trivially true because V± are essentially bounded due to the

surface regularity assumption and 〈d1–4〉. Under 〈r1–3〉, explicit expressions for the covariant
derivatives of K and M in terms of the partial derivatives of the function f show that even
sup{V±(·, u)| u ∈ I } belongs to L1(R2, (1 + |x|δ) dx), which gives 〈a3〉. Let us remark that
we require the L1 integrability in 〈r3〉, which is a stronger condition than the L2 integrability
required for the second and third derivatives of f . The assumption 〈a2〉 is a consequence
of 〈a3〉 and the boundedness of V±.

On the other hand, there is a difference between the Hamiltonian (3.1) and our operatorsH±
because the potentials V± themselves depend on ε. Inspecting the proof of theorem 3.4 we see
that one can modify it to get the expansion (3.7) using ε �→ V±(ε) as well. However, expanding
the latter in terms of ε, the final expansion resulting from (3.7) changes, and to ensure that
it represents an eigenvalue it is necessary that the lowest-order term in this expansion is not
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only nonpositive but rather strictly negative. Recall that one can find (physically interesting)
examples of situations when the potential depends on the coupling parameter in a nonlinear
way and a bound state in the critical zero-mean case may or may not exist [BCEZ].

Hence one has to examine carefully the behaviour with respect to powers of ε in the
expansion obtained from (3.7) by an appropriate change of the integration variables:

w±(ε) = ε

2π
σ 2
±

∫
R2
(V±)11(σ±x; ε) dx

+

(
ε

2π

)2

σ 4
±

{ ∫
R2×R2

(V±)11(σ±x; ε)
(
γE + ln

σ±|x − x ′|
2

)
×(V±)11(σ±x ′; ε) dx dx ′

−
∞∑
j=2

∫
R2×R2

(V±)1j (σ±x; ε)K0
(
kj (κ1)σ±|x − x ′|)

×(V±)j1(σ±x ′; ε) dx dx ′
}

+ O(ε2+γ )

which determines the possible eigenvalues ofH± viaE± = κ2
1 −exp(2w−1

± ). By virtue of (4.3)
we can write

ε−1V2(x, u; ε) = ε(k0(x)−m0(x)
2) + r2(x, u; ε)

where r2 is an integrable function collecting the terms of order ε2 and higher. Hence

∀j ∈ N : ε−1(V2)1j (x; ε) = [ε(k0(x)−m0(x)
2) + O(ε2)]δ1j

where we abuse the notation a little because the error term depends on x as well. The expansion
of ε−1v1 requires more attention because ε−1�gM in the second term of (4.7) is of order one.
First of all, we can write

v1(x, u; ε) = −u(�gM)(x; ε) + u2( 1
2�gK − |∇gM|2g − 2M�gM)(x; ε) + r1(x, u; ε)

where r1 is an integrable function of order O(ε3). This does not mean, of course, that the first
two terms constitute a quadratic polynomial in ε, because | · |g, ∇g and �g expand as well.
Since the first term in the above expansion of v1 is an odd function of u, it does not contribute
to (V±)11. On the other hand, it plays an important role in the higher modes:

(v1)11(x; ε) = ‖uχ1‖2
I
( 1

2�gK − |∇gM|2g − 2M�gM)(x; ε) + O(ε3)

(v1)1j (x; ε) = −(χ1, uχj )I (�gM)(x; ε) + O(ε2) if j ∈ N \ {1}.
Notice that the inner product in the second line is nonzero for even j only. Now we use the
relations

|∇gM|2g = |∇M|2 + ε2M,µη̃
µνM,ν and −�g = −� + ε2L(ε)

where L(ε) is a second-order differential operator with coefficients which expand as O(1).
This, together with (4.3), yields

ε−1(v1)11(x; ε) = ε ‖uχ1‖2
I
( 1

2�k0 − |∇m0|2 − 2m0�m0)(x) + O(ε2)

ε−1(v1)1j (x; ε) = −(χ1, uχj )I (�m0)(x) + O(ε).
Since C±/C2

∓ and σ± expand like 1 + O(ε), we arrive at

w±(ε) = ε2

2π

{ ∫
R2

(
k0 −m2

0

)
(x) dx + uχ1‖2

I

∫
R2
( 1

2�k0 − |∇m0| − 2m0�m0)(x) dx



Bound states in mildly curved layers 5983

− 1

2π

∞∑
j=2

(χ1, uχj )
2
I

∫
R2×R2

(�m0)(x)K0
(
kj (κ1)σ±|x − x ′|)

×(�m0)(x
′) dx dx ′

}
+ O(ε2+γ ) (4.11)

where in fact the sum runs over even j only.
This expression can be further simplified. By a double integration by parts, where one

uses the fact that f,µf,νρ → 0 as |x| → ∞ due to 〈d1〉 and 〈d2〉, we get that the integral of k0

is equal to zero. We note in this connection that it follows then from (4.1) and (4.3) that the
total Gauss curvature, K := ∫

�ε
K d�ε, behaves as O(ε4). Using the divergence theorem and

the assumptions 〈d1〉, 〈d2〉 and 〈d3〉, by which ∇K → 0 as |x| → ∞, we find that the integral
of �k0 does not contribute as well. A similar argument employing the Green formula gives∫

R2
(m0�m0)(x) dx = −

∫
R2

|∇m0|2(x) dx. (4.12)

It is convenient to rewrite the integral part of the last term in (4.11) by means of a convolution:

1

2π

∫
R2×R2

(�m0)(x)K0(kj (κ1)σ±|x − x ′|) (�m0)(x
′) dx dx ′ = (�m0,Gk ∗�m0)

where Gk(·) := (2π)−1 K0(k| · |) and k abbreviates kj (κ1)σ±. Since Gk is the fundamental
solution of the distributional equation (−� + k2)Gk = δ, we get

(�m0,Gk ∗�m0) = (�m0,�Gk ∗m0)

= (�m0, (k
2Gk − δ) ∗m0)

= k2(�m0,Gk ∗m0)− (�m0,m0)

= k2(Gk ∗�m0,m0) + ‖∇m0‖2

= k2(�Gk ∗m0,m0) + ‖∇m0‖2

= k2((k2Gk − δ) ∗m0,m0) + ‖∇m0‖2

= k4(m0,Gk ∗m0)− k2‖m0‖2 + ‖∇m0‖2. (4.13)

In the second line we have employed the identity (4.12). If we insert the obtained expression
into the expansion (4.11) and use, in addition, the Parseval identity:

‖uχ1‖2
I
=

∞∑
j=1

(χ1, uχj )
2
I

(4.14)

we find that the terms containing ‖∇m0‖ cancel. Hence we arrive at

w±(ε) = − ε2

2π

{
‖m0‖2 +

∞∑
j=2

(χ1, uχj )
2
I
k2[k2(m0,Gk ∗m0)− ‖m0‖2]

}
+ O(ε2+γ )

where, of course, k expands as kj (κ1) + O(ε). Since
∞∑
j=2

(χ1, uχj )
2
I
kj (κ1)

2 = ‖u ∂3χ1‖2
I
− κ2

1‖uχ1‖2
I
= 1

we see also that the terms containing ‖m0‖ cancel. Using finally the Fourier transformation
as in (3.8), we obtain

w±(ε) = −ε2
∞∑
j=2

(χ1, uχj )
2
I
kj (κ1)

4
∫

R2

|m̂0(ω)|2
|ω|2 + κ2

j − κ2
1

dω + O(ε2+γ )
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where we have also expanded the remaining k from Gk w.r.t. ε and included the higher orders
into the error term.

We note that m0 (and therefore m̂0) cannot be identically zero once �1 is not a plane.
It can be seen from the formulae (4.3): suppose that m0 ≡ 0. Then f,11 ≡ −f,22,
which yields k0 = −(f,11

2 + f,12
2) and consequently k0 ≡ 0 because we have shown that∫

R2 k0(x) dx = 0. Hence K ≡ 0. At the same time, f,µν ≡ 0, which gives m1 ≡ 0 and
therefore M ≡ 0. If we thus exclude the trivial planar case, the lowest-order term in the
expansion is strictly negative. Since it is identical for both w+ and w−, it follows by (4.10)
that it is the same also for the expansion of w(ε) in the ground-state energy E = κ2

1 − e2w−1

of the Hamiltonian H . This concludes the proof of theorem 2.1.

Remark. The surface�1 is not planar if the matrix θµν is not identically zero, i.e. if f,µν �≡ 0.
This can be seen as follows. Suppose that f,µν = 0 identically. Solving this as a system of
differential equations, we get f (x) = cµx

µ, where cµ is a constant vector, which is exactly a
plane parametrization.

4.4. The thin layer limit

We say that the layer �ε is thin if a # ρm. Since the minimum curvature radius introduced
in (4.5) explodes as ε → 0 this condition is eventually always satisfied. It is useful, however,
to consider also a ‘true’ thin-layer limit in which we start with a mildly curved layer with a
fixed ε which is already in the asymptotic regime, and make its width d small. To this aim
we rewrite the formula for w1 in the expansion w(ε) =: ε2w1 + O(ε2+γ ) of theorem 2.1 in
a different way. For this we go back to the intermediate expansion (4.11). We simplify it as
above. However, we do not use (4.13) and (4.14). Instead we apply the transformation (3.8)
directly to (�m0,Gk ∗�m0), expand k in terms of ε, thus obtaining

w1 = − 1

2π
‖m0‖2 +

‖uχ1‖2
I

2π
‖∇m0‖2 −

∞∑
j=2

(χ1, uχj )
2
I

∫
R2

|�̂m0(ω)|2
|ω|2 + kj (κ1)2

dω.

An explicit calculation yields ‖uχ1‖2
I
= (π2−6)/(12κ2

1 ), so the second term in the expression
for w1 is proportional to d2 by the definition of κ1. On the other hand, using the estimate
|ω|2 + kj (κ1)

2 � kj (κ1)
2 � κ2

2 − κ2
1 = 3κ2

1 , together with (4.14) and the above explicit result,

we see that the third term is O(d4). Note that this makes sense because ‖�̂m0‖ = ‖�m0‖ is
finite due to 〈r3〉. Summing up the argument, we obtain the expansion (2.4).

This formula has a transparent structure. By virtue of (4.3), (4.1) and the fact
that

∫
R2 k0(x) dx = 0, we get the behaviour∫

�ε

(K −M2) d�ε = −ε(‖m0‖2 + O(ε2)).

Hence the first term of (2.4) comes from the surface attractive potential K − M2 which
dominates the picture for thin layers. The last claim follows from (4.7) and (4.8), because v1 →
0 and the leading term of V2 isK−M2 in the limit u → 0, which one can do as soon as d → 0.
At the same time, C± → 1, which in view of (4.6), leads to the ‘limiting’ Hamiltonian
−�g − ∂2

3 + K −M2. Such a limit is, of course, only formal since the transverse spectrum
explodes, which classically corresponds to increasingly rapid oscillations in the transverse
direction. Nevertheless, a similar limit with the confinement realized by a harmonic potential
transverse to a compact curved surface was discussed recently in a rigorous way in [FH] and
led to the same tangential operator −�g + K −M2.
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[ES] Exner P and Šeba P 1989 Bound states in curved quantum waveguides J. Math. Phys. 30 2574–80
[FH] Froese R and Herbst I Realizing holonomic constraints in classical and quantum mechanics Commun. Math.

Phys. in press
[Kli] Klingenberg W 1978 A Course in Differential Geometry (Berlin: Springer)
[KJ] Koppe H and Jensen H 1971 Das prinzip von d’Alembert in der klassischen mechanik und in der

quantentheorie Sitzungber. der Heidelberger Akad. der Wiss. Math.-Naturwiss. Klasse 5 127–40
[LCM] Londergan J T, Carini J P and D P Murdock 1999 Binding and scattering in two-dimensional systems Lecture

Notes in Physics vol m60 (Berlin: Springer)
[RS4] Reed M and Simon B 1978 Methods of Modern Mathematical Physics, IV. Analysis of Operators (New

York: Academic)
[Sim] Simon B 1971 Quantum Mechanics for Hamiltonians Defined by Quadratic Forms (Princeton, NJ: Princeton

University Press)
[Sp3] Spivak M 1975 A Comprehensive Introduction to Differential Geometry vol 3 (Berkeley, CA: Publish or

Perish)
[Wei] Weidmann J 1980 Linear Operators in Hilbert Spaces (Berlin: Springer)


